If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+24n+10=0
a = 2; b = 24; c = +10;
Δ = b2-4ac
Δ = 242-4·2·10
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{31}}{2*2}=\frac{-24-4\sqrt{31}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{31}}{2*2}=\frac{-24+4\sqrt{31}}{4} $
| 83.2x=14.8 | | -56=-w | | -8+7x-2=3x+4+2x-8+7x-2=3x+4+2x | | x+6+3x+4=180 | | 2s–8=34 | | 5r-3r-2r+7r+5+10=-45 | | 13+26°=x | | 3x-12=6(x-2) | | 50c+0.50=65c+0.60 | | –7−10j=–4−9j | | 2y+(-4)=13 | | 30=6+z | | 11.75-3.50x=52 | | 3.8(10)=18(y) | | 4.12b=36 | | −37=2x−7 | | 24-12=8x+4 | | 6(5m–3)=13(24m+12) | | y5–3=15 | | 5x-3=16x+4 | | d/1.1=1.4 | | 1/2x+1/4(x+2)=5 | | -15=3+4(y-7) | | 9x^2=425 | | X^2+5x-10=2x+18 | | g/27=21 | | −8x^2−8=−32 | | 7r-1=57 | | 9x-3x+6=3(2x+4)+6 | | 9=x/23 | | 5x-11/2=13 | | −8x2−8=−32 |